

# Master Thesis - "Simulation of electric machine test rig" (15 credits/10 weeks - 1-2 students)

### **About us**

GKN Aerospace is the world's leading multi-technology tier 1 aerospace supplier. With 55 manufacturing locations in 15 countries, we serve over 90% of the world's aircraft and engine manufacturers. We design and manufacture innovative smart aerospace systems and components. Our technologies are used in aircraft ranging from the most used civil aircraft to the world's advanced 5th generation fighter aircraft and the Ariane orbital rockets used by ESA.

### **Project Background**

Aircraft are becoming more and more electrified, and we are of course expanding our knowledge into the field as well. GKN Aerospace Sweden is investing in building up testing and design capabilities for future proofing our engines and engine components using electric machines and devices.

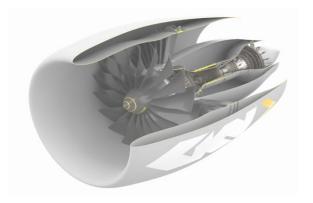
We are now in the process of building a generator rig and are looking for students to help us with creating a simulation model of the electric machines in the rig so that test cases can be simulated in order to check the validity of test results.

## **Assignment Description**

The task is to create a simulation model of the generator rig using the software MotorCAD.

- Create a simulation model in MotorCAD.
- Run the generator rig to validate the results from the simulation.
- Explain the theory behind the results

The proposed assignment can be extended in time and scope to 30 credits/20 weeks, for 1-2 student, to meet applicants requests and background. Please contact Daniel Buvarp for further discussions.


## Qualifications

- Student of a Master's degree programme in Electric vehicle engineering or similar
- Experience using MotorCAD
- Experience working with electric machines in a lab setting is meritorious
- Able to work independently

## **Contact and Application**

To apply, please send your resume and cover letter to Daniel Buvarp, daniel.buvarp@gknaerospace.com.

Last date for application: 2022-12-15. Interviews will be held continuously and the position could be filled prior to the last application date.

